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Abstract               

       A mathematical model of solid cancer growth with angiogenesis in the absence of cancer controlling 

mechanism has been discussed. The intial conditions supplied to the dynamical system consists of a perturbation in 

the form of pulse. The aim of this method is to derive the approximated analytical solution of non-linear differential 

equations in the dynamics of cancer growth using the Homotopy perturbation method. Our analytical results are 

compared with the numerical simulation and a satisfactory agreement is observed.  This method can be easily 

extended to solve the strongly nonlinear initial and boundary value problems arising in all applied sciences and 

technology problems.   

Keywords: Mathematical modeling; Cancer growth; System of nonlinear differential equation; Homotopy 

perturbation method; Numerical simulation. 

______________________________________________________________________________ 

1. Introduction 

                  Mathematical models of cancer growth have been the subject of research activity for many years. Cancer 

arises when within a single cell multiple malfunctions of control systems occur, which are broad, the system that 

promote cell growth and the system that protect against erratic growth [1]. In Gompertzian model [2-3], logistic and 

power function have been extensively used to describe tumor growth dynamics [4-5]. These simple formalisms have 

been also used to investigate different therapeutic strategies such as antiangiogenic or radiation treatments [6]. 
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Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is a crucial component of many 

mammalian growth processes [7]. The first event of tumor-induced angiogenesis involves the cancerous cells of a 

solid tumor secreting a number of chemicals, collectively known as tumor angiogenic factors, or TAF [8], into the 

surrounding tissue.      

          Angiogenesis is a complex method, whereby existing micro vessels give produce to new capillaries (via 

sprouting) that are capable of delivering additional oxygen and nutrients to a growing, injured, or inflamed tissue. 

This method happens throughout normal growth and development and in pathological adaptations, like 

embryogenesis, tumor genesis, peripheral blood vessel disease, diabetic retinopathy, and wound healing. 

Angiogenesis is complex in that it depends on the precise coordination of various cell types, variety of various 

cellular behaviors (i.e. Proliferation and migration), and biomechanical and biochemical signals that operate 

regionally (i.e. at cell-cell contact interfaces) and across distances spanning many microns within the tissue .The 

outcome may be a remodeled micro vascular network that contains a replacement cohort of capillary-sized vessels. 

At the tissue-level, the new vessels are ready to augment blood flow and oxygenation to the extent needed by the 

metabolic demand of the tissue or induced by the pathology (e.g. tumor). Since the middle 1900’s, a number of 

experimental models have been developed to review each physiological and pathological angiogenesis [11,16] 

Models aimed at describing the growth of tumors in the vascular phase including also the development of the 

vasculature are rather few. A simple mathematical model that emphasizes the concept that the tumour growth is a 

process strictly controlled by the development of the vasculature has been proposed by Hahnfeldt et al. 

[10].Recently Yang [1] developed the mathematical model to describe the solid cancer growth dynamics inducing 

angiogenesis in the absence of cancer controlling mechanism. To the best of our knowledge the analytical 

expression of the normal cells ,C  epithelial cells E , cancer cells ,T  pre-angiogenesis cells P  and angiogenesis 

cells A  have not been derived. The purpose of this communication is devise that simple form an analytical 

expression of the normal cells ,C  epithelial cells E , cancer cells ,T  pre-angiogenesis cells P  and angiogenesis 

cells A  are derived using the HPM method. 

 

2. Mathematical formulation of the problem and analysis 

           Our aim is the development of analytical technique to describe the cancer growth dynamics inducing 

angiogenesis. The model does not embrace method physiological processes just like the diffusion of oxygen into a 

solid wherever it's consumed by metabolic processes, the outward diffusion of carboxylic acid from a 

solid that produces it by metabolic processes and also the diffusion of oxygen away from a blood vessel into a 

region with associate physiological state. The dynamics of cancer growth described by the following system of the 

nonlinear equations: 
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In this model we can assume that ,0)( tD  since the normal cells are mutual to cancer cell.  Also we assume that 

1k  and 2k  are constants. Also the interaction parameters 1  and 2  are defined as follows: 
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Another simplification assumes that the rate at which cancer cell increase due to new vascularization is much higher 

than due to existing one.   
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The following initial conditions to the system of the above equations become: 

0)0(,0)0(,)0(,)0(,)0(  APCTEECCC mbma                                                                             (8) 

where aC  and bE  are the cancer free state value and mC is the instantaneous mutation of normal cells to initiate 

cancer growth.  
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3. Solution of the nonlinear differential equations using the Homotopy perturbation 

method 

         Linear and non-linear phenomena are of fundamental importance in various fields of science and engineering. 

Most models of real – life problems are still very difficult to solve. Therefore, approximate analytical solutions such 

as Homotopy perturbation method (HPM) [7-18] were introduced. This method is the most effective and convenient 

ones for both linear and non-linear equations. Perturbation method is based on assuming a small parameter. The 

majority of non-linear problems, especially those having strong non-linearity, have no small parameters at all and 

the approximate solutions obtained by the perturbation methods, in most cases, are valid only for small values of the 

small parameter. 

           Recently, many authors have applied the Homotopy perturbation method (HPM) to solve the non-linear 

boundary value problem in physics and engineering sciences [16-19]. Recently this method is also used to solve 

some of the non-linear problem in physical sciences [11-18]. This method is a combination of Homotopy in 

topology and classic perturbation techniques. The HPM is unique in its applicability, accuracy and efficiency. The 

HPM uses the imbedding parameter p as a small parameter, and only a few iterations are needed to search for an 

asymptotic solution. Using this method (See Appendix B), we can obtain the approximate analytical solutions to the 

eqns. (4)-(9) are as follows: 
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4. Numerical Simulation 

          The non-linear differential equations (3)-(8) are also solved numerically. We have used the function main in 

Matlab/Scilab software to solve the initial-boundary value problems for the nonlinear differential equations 

numerically. This numerical solution is compared with our analytical results in Figures 1 - 10. Upon comparison, it 

gives a satisfactory agreement for all values of the dimensionless time t . The Matlab/Scilab program is also given 

in Appendix C. 

 

5. Results and Discussions 

        Figure 1-10 shows the dimensionless concentration of the normal cells ,C  epithelial cells E , cancer cells ,T  

pre-angiogenesis cells P  and angiogenesis cells A  versus the dimensionless time .t  From Figs. 1 and 2, it is clear 

that concentration cells ),cellscancer(T )cellsisangiogenespre( P  and cells)isangiogenes(A does not change and 

the concentration cells )cellsnormal(C  and )cellsepithelial(E  increases in some fixed values of the dimensionless 

parameters  and,,,,,,,,,,,,,,,,, 21432154321321 ba ECkkkk in the ranges of 10 t and 

.50  From Fig. 3-5, it is observed that the  concentration  cell T  decreases, concentration cells P  and A does not 

changes and the concentration cells increases in some fixed values of the all dimensionless parameters in the ranges 

of 25.-0and200,100 t  

         From Fig. 6, it is evident that the concentration cells T  decreases, the concentration cells  P  and A does not 

changes and the concentration cells C  and E  increases small, in some other fixed values of the all other 

dimensionless parameters in the ranges of 10 t . From Fig. 7-10, it is noted that the concentration cells T  

decreases, the concentration cells  P  and A does not changes and the concentration cells C  and E  increases, in 

some other fixed values of the dimensionless parameters for various values of the time.  
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Fig. 1: Dimensionless concentrations of the cells )(and)(),(),(),( tAtPtTtEtC  versus the dimensionless time t .  

The curve is plotted using the eqns. (9)-(13) in some fixed values of the dimensionless parameters 

.1.0,5.0  cb TE  
 

 

 

Fig. 2: Dimensionless concentrations of the cells )(and)(),(),(),( tAtPtTtEtC  versus the dimensionless time t .  

The curve is plotted using the eqns. (9)-(13) in some fixed values of the dimensionless parameters 

.1.0,5.0  cb TE  
 



Canadian Open Mathematical Modeling and Applied Computing Journal 

Vol. 1, No. 1, August 2014, pp. 1- 19                                                               

Available online at http://crpub.com/Journals.php           
Open access 

 

Copyright © crpub.com, all rights reserved.  7 

 

 

Fig. 3: Dimensionless concentrations of the cells )(and)(),(),(),( tAtPtTtEtC  versus the dimensionless time t .  

The curve is plotted using the eqns. (9)-(13) in some fixed values of the dimensionless parameters 

.1.0,5.0  cb TE   

 

 

Fig. 4: Dimensionless concentrations of the cells )(and)(),(),(),( tAtPtTtEtC  versus the dimensionless time t .  

The curve is plotted using the eqns. (9)-(13) in some fixed values of the dimensionless parameters 

.1.0,5.0  cb TE  
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Fig. 5: Dimensionless concentrations of the cells )(and)(),(),(),( tAtPtTtEtC  versus the dimensionless time t .  

The curve is plotted using the eqns. (9)-(13) in some fixed values of the dimensionless parameters 

.1.0,5.0  cb TE  
 

 

Fig. 6: Dimensionless concentrations of the cells )(and)(),(),(),( tAtPtTtEtC  versus the dimensionless time t .  

The curve is plotted using the eqns. (9)-(13) in some fixed values of the dimensionless parameters .5.0,1  cb TE  
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Fig. 7: Dimensionless concentrations of the cells )(and)(),(),(),( tAtPtTtEtC  versus the dimensionless time t .  

The curve is plotted using the eqns. (9)-(13) in some fixed values of the dimensionless parameters .5.0,1  cb TE  
 

 

Fig. 8: Dimensionless concentrations of the cells )(and)(),(),(),( tAtPtTtEtC  versus the dimensionless time t .  

The curve is plotted using the eqns. (9)-(13) in some fixed values of the dimensionless parameters .5.0,1  cb TE  
 



Canadian Open Mathematical Modeling and Applied Computing Journal 

Vol. 1, No. 1, August 2014, pp. 1- 19                                                               

Available online at http://crpub.com/Journals.php           
Open access 

 

Copyright © crpub.com, all rights reserved.  10 

 

 

Fig. 9: Dimensionless concentrations of the cells )(and)(),(),(),( tAtPtTtEtC  versus the dimensionless time t .  

The curve is plotted using the eqns. (9)-(13) in some fixed values of the dimensionless parameters .5.0,1  cb TE  
 

 

Fig. 10: Dimensionless concentrations of the cells )(and)(),(),(),( tAtPtTtEtC  versus the dimensionless time t .  

The curve is plotted using the eqns. (9)-(13) in some fixed values of the dimensionless parameters .5.0,1  cb TE   
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6. Conclusion 

         The time dependent non-linear differential equations of solid cancer growth with angiogenesis in the absence 

of cancer controlling mechanism can be solved analytically and numerically. The approximate analytical 

expressions of the concentration of the normal cells, epithelial cells, cancer cells, pre-angiogenesis cells and the 

angiogenesis cells  has been derived using the Homotopy perturbation method. These analytical results can be used 

to analyze the a model in which the sizes of the normal and cancer cells are allowed to depend on the overall 

network of blood vessels: normal and cancer cells compete for nutrients provided by the pre-existing blood vessels, 

while cancer cells have additional source originated from angiogenesis.   Our results are compared with the 

numerical simulation and it gives satisfactory agreement .This analytical result helps us for the better understanding 

of the model. 
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Appendix: A 

Basic concepts of the Homotopy perturbation method   

To explain this method, let us consider the following function: 

  0 Ω ,      rf(r)(u)Do                                                                                                                                      (A.1) 

with the boundary conditions of 

Γ      r,         )
n

u
(u, Bo 




0                                                                                                                                 (A.2) 

where oD  is a general differential operator, oB  is a boundary operator, )(rf  is a known analytical function and   

is the boundary of the domain  . In general, the operator oD  can be divided into a linear part  L and a non-linear 

part N . The eqn. (A.1) can therefore be written as 

 0)()()(  rfuNuL                                                                                                                                           (A.3) 

By the Homotopy technique, we construct a Homotopy  ]1,0[:),( prv  that satisfies 

  .0)]()([)]()()[1(),( 0  rfvDpuLvLppvH o                                                                                        (A.4) 

  .0)]()([)()()(),( 00  rfvNpupLuLvLpvH                                                                                        (A.5) 

where p [0, 1] is an embedding parameter, and 0u   is an initial approximation of the eqn. (A.1) that satisfies the 

boundary conditions. From the eqns. (A.4) and (A.5) we have 

0)()()0,( 0  uLvLvH                                                                                                                                        (A.6) 

0)()()1,( 0  rfvDvH                                                                                                                                        (A.7) 

When p=0, the eqns. (A.4) and (A.5) become linear equations. When p =1, they become non-linear equations. The 

process of changing p from zero to unity is that of 0)()( 0  uLvL  to 0)()(  rfvDo . We first use the 

embedding parameter p  as a small parameter and assume that the solutions of the eqns. (A.4) and (A.5) can be 

written as a power series in p : 

 ...2
2

10  vppvvv                                                                                                                                          (A.8) 

Setting 1p   results in the approximate solution of the eqn. (A.1): 

...lim 210
1




vvvvu
p

                                                                                                                                   (A.9) 

This is the basic idea of the HPM. 

 

Appendix: B  

Approximate analytical solution of the concentration species using Homotopy perturbation 

method         

       In this appendix, how the eqns. (9)-(13) are derived in this paper. We first construct a Homotopy as follows: 
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The approximate analytical solutions of the eqns. (B.1)-(B.5) are 

.....3
3

2
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10 CpCppCCC                                                                                                                             (B.6) 

.....3
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.....3
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.....3
3

2
2

10 PpPppPPP                                                                     (B.9) 

......3
3

2
2

10 ApAppAAA                                                                                                                           (B.10)  

Substituting the eqns. (B.6) -(B.10)  into the eqns. (B.1) - (B.5) respectively we get 

 

0

....)....)((

....)(

....)()(
....)(

...)()(
....)(

1

2
2

103
3

2
2

101

2
2

2
10

1

1

2
2

1011
2

2
10

2
2

1011
2

2
10
























































TppTTCpCppCC

CppCC
k

CppCC
dt

CppCCd

p

CppCC
dt

CppCCd
p









                                                          (B.11) 

 

0

).....)(.....))((

...)(....)(
.....)(

.....)()(
.....)(

1

2
2

2
10

2

2
2

2
1022

2
2

102
2

10
2

2
10

2
2

1022
2

2
10
















































EppEE
k

EppEE

TppTTEppEE
dt

EppEEd

p

EppEE
dt

EppEEd
p








                                (B.12) 



Canadian Open Mathematical Modeling and Applied Computing Journal 

Vol. 1, No. 1, August 2014, pp. 1- 19                                                               

Available online at http://crpub.com/Journals.php           
Open access 

 

Copyright © crpub.com, all rights reserved.  15 

 

 

0

....)(....)(

....)(....)(

....)(....)(

....)(
....)(

....)(
....)(

1

2
2

102
2

102

2
2

2
102

2
10

3

3

2
2

102
2

103

2
2

103
2

2
10

2
2

103
2

2
10




























































TppTTCppCC

TppTTAppAA
k

TppTTAppAA

TppTT
dt

TppTTd

p

TppTT
dt

TppTTd
p











                                   (B.13) 

 

0

....)(.....)(

....))((
....)(

....))((
....)(

1

2
2

102
2

10

2
2

104
2

2
10

2
2

104
2

2
10












































TppTTEppEE

PppPP
dt

PppPPd

p

PppPP
dt

PppPPd
p







                                                        (B.14) 

 

0

....)(....)(

....)(....)(....)(

....)(
....)(

....)(
....)(

1

2
2

2
102

2
10

4

2
2

102
2

102
2

10

2
2

105
2

2
10

2
2

105
2

2
10






















































AppAATppTT
k

AppAATppTTPppPP

AppAA
dt

AppAAd

p

AppAA
dt

AppAAd
p









                               (B.15) 

Comparing the coefficients of like powers of p  from the eqns. (B.11)-(B.15) respectively, we can obtain the 

following differential equations 
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The initial approximations are as follows: 

 0)0(,0)0(,)0(,)(0   ;)0( 00000  APCTEECCC mbma                                                                  (B.27) 

..........3,2,1for   , 0)0(,0)0(,0)0(,0)(0   ;0)0(   iAPTEC iiiii                                                        (B.28)    

Solving the eqns. (B.16)- (B.26) and using the initial approximations eqns. (B.28)-(B.29), we get 
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According to the HPM, we can conclude that  
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Substituting the eqns. (B.29) and (B.34) into an eqn. (B.40) and substituting the eqns. (B.30) and (B.35) into an eqn. 

(B.41) and substituting the eqns.  (B.31) and (B.36) into an eqn. (B.42),  and substituting the eqns. (B.32) and (B.33) 

into an eqn. (B.43) and finally substituting the eqns. (B.33), (B.38) and (B.39) into an eqn. (B.44), we can obtain the 

solutions in the text. 

Appendix: C 

Matlab/Scilab program to solve the nonlinear eqns. (3)-(8) 

function  

options= odeset ('RelTol', 1e-6,'Stats','on');  

%initial conditions  

x0 = [.4; .5; .1; 0; 0];   

tspan = [0, 6];   

tic  

[t, x] = ode45(@TestFunction,tspan,x0,options);  

toc   

figure  

hold on  

plot(t, x(:,1))  

plot(t, x(:,2))  

plot(t, x(:,3))  

plot(t, x(:,4))  

plot(t, x(:,5))  



Canadian Open Mathematical Modeling and Applied Computing Journal 

Vol. 1, No. 1, August 2014, pp. 1- 19                                                               

Available online at http://crpub.com/Journals.php           
Open access 

 

Copyright © crpub.com, all rights reserved.  18 

 

legend('x1','x2','x3','x4','x5')  

ylabel('x')  

xlabel('t')   

return   

function [dx_dt]= TestFunction(t,x)  

a1=0.1; a2=0.1; a3=0.2; f=0.01; c1=0.01; c2=0.05; c3=0.05; c4=0.01; c5=0.01; 

k1=10; k2=20, k3=5; k4=1; e=0.01; d=0.01; b1=0.01; b2=0.01; 

dx_dt(1)=a1*x(1)*(1-(x(1)/k1))-b1*x(1)*x(3)-c1*x(1); 

dx_dt(2)=a2*x(2)*(1-(x(2)/k2))-d*x(2)*x(3)-c2*x(2);  

dx_dt(3)=a3*x(5)*x(3)*(1-(x(3)/k3))-b2*x(1)*x(3)-c3*x(3); 

dx_dt(4)=d*x(2)*x(3)-e*x(4)-c4*x(4); 

dx_dt(5)=e*x(4)+(f*x(3)*x(5))*(1-(x(5)/k4))-c5*x(5); 

dx_dt = dx_dt'; 

return  

 

Appendix: D 

Nomenclature 

Symbol Meaning Fixed values Units 

C  Concentration of normal cells at time t    

E  Concentration of epithelial cells at time t    

T  Concentration of cancer cells at time t   

P  Concentration of pre-angiogenesis cells at time t    

A  Concentration of angiogenesis cells at time t    

1  Intrinsic growth rate of normal cells 0.1 1days  

2  Intrinsic growth rate of epithelial cells 0.1 1days  

3  Intrinsic growth rate of cancer cells 0.2 11][   daysA  

  Intrinsic growth rate of angiogenesis cells 0.01 11][   daysT  

1  Mortality rate of normal cells 0.01 1days  

2  Mortality rate of epithelial cells 0.05 1days  

3  Mortality rate of cancer cells 0.05 1days  

4  Mortality rate of pre-angiogenesis cells 0.01 1days  
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5  Mortality rate of angiogenesis cells 0.01 1days  

1k  Carrying capacity of normal cells 10 ][C  

2k  Carrying capacity of epithelial cells 20 ][E  

3k  Carrying capacity of cancer cells 5 ][T  

4k  Carrying capacity of angiogenesis cells 1 ][A  

  Transfer rate from pre-angiogenesis to angiogenesis cells 0.1 1days  

  Epithelial sprouting rate 0.01 11][   daysT  

1  Rate of inhibition of normal cells by cancer cells 0.01 11][   daysT  

2  Rate of inhibition of cancer cells by normal cells 0.01 11][   daysC  

 

       


